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Flow in a differentially rotated 
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A liquid drop held captive between parallel disks that are differentially rotated is a 
model for the swirling flows induced by crystal rotation in the floating-zone process 
for growing semiconductor materials. An asymptotic analysis for a cylindrical drop 
is presented that elucidates the structure of the axisymmetric cellular motions caused 
by disk rotation at low Reynolds number. Variations of meniscus shape induced by 
these flows are described in the limit of small capillary number. Most cellular flow 
fields break the bifurcation point that corresponds to the Plateau-Rayleigh limit for 
the length of a static drop into two disjoint shape families and lower the maximum 
stable drop length. This effect is studied by a singular bifurcation analysis. 

1. Introduction 
A liquid drop that forms a bridge between two coaxial and parallel solid surfaces 

is a fluid-mechanical model of the floating-zone process for growing semiconductor 
materials of high purity (Carruthers & Grasso 1972; Fowle et al. 1980). Here a 
cylindrical rod of a multicomponent and polycrystalline material is melted and 
resolidified into a single crystal by using a short circumferential heater that  translates 
slowly along the axis of the rod. The molten zone forms between the crystal and feed 
rods and is held in place by surface tension. I ts  size is governed by heat transfer and 
limited by instabilities that  originate a t  the melt/gas meniscus. I n  practice, the radius 
of the rods and the height of the zone range roughly between 0.5 and 3 cm. 

Achieving a high degree of uniformity in the product crystal requires suppression 
of the azimuthal variations in the thermal field, caused by imperfect heater design, 
and promotion of the uniform transfer of solutes from the melt to the solidification 
interface. Azimuthal variations of the thermal field are moderated by rotating the 
feed and crystal rods that bound the melt ; for this purpose solid-body rotation would 
suffice. Yet differential rotation of these rods is a common practice, for the cellular 
flows that result are believed to smooth the radial distribution of solute across the 
growing interface. 

The only theories for composition variation that account for the flows induced by 
rotation (Burton, Prim & Slichter 1953) treat the crystal surface as an infinite 
rotating disk and use fluid mechanics based on the similarity solution that is available 
in this limit (Cochran 1934). The radial turning flows, which are ignored in the 
infinite-disk analysis, play a large role in setting the dopant distribution across the 
crystal, especially in the small-scale growth systems that are used in laboratories and 
are being designed for experiments in outer space. The multicellular structure of these 
flows has been noted experimentally in a model system (Fowle et al. 1980). 

In  this report we present asymptotic results for the structure of these swirling flows 
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and the interaction between these flows and the shape of the meniscus in the limit 
of low rotation rates, as measured by the Reynolds number, of a nearly cylindrical 
liquid zone. The slow translation rate of the melt through the rod is ignored and the 
zone is modelled as being stationary between two circular solid disks; this model is 
precisely the one used in the experiments of Fowle et al. (1980). The formulation of 
the free-boundary problem for the flow and meniscus shape is presented in $2, along 
with a solution scheme for almost-cylindrical zones of melts with low capillary 
numbers. The cellular flow fields for zero capillary number are analysed in $ 3  in the 
limit of small Reynolds number, and the meniscus deformations caused by thcse flows 
are presented in $4. 

The limits of stability of a captive liquid zone have been laid out in the cases where 
the liquid is either hydrostatic or gyrostatic (Heywang 1956 ; Coriell, Hardy & Cordes 
1977, Boucher & Evans 1980; Brown & Seriven 1980; Ungar & Brown 1982). It has 
long been known (Plateau 1873; Rayleigh 1879; Mason 1970) that the height ofa static 
cylindrical drop cannot exceed its perimeter; drops with a greater length will reduce 
their surface energy by becoming unduloidally shaped and will eventually break up 
into droplets. An alternative way of viewing this stability limit comes from studying 
the possibility of multiple equilibrium shapes of the static zone. I n  this context, the 
Ylateau-Rayleigh limit for the drop length is denoted by the bifurcation of a family 
of equilibrium unduloidal menisci from the perfectly cylindrical forms (Mason 1970 ; 
Ungar & Brown 1982) 

Each unduloidal shape is reflectively antisymmetric about a plane perpendicular 
to the axis of rotation and halfway between the two disks. The shapes bulge out near 
one disk and neck in a t  the other to conserve volume. There are two distinct shape 
families of unduloids because, in the absence of gravity, the orientation of the 
meniscus is arbitrary. The families of unduloids evolve toward lengths shorter than 
the stability limit and are unstable. 

The effects of gravity, drop volume and rigid rotation on meniscus stability have 
been described as changes in the bifurcation point that represents the Plateau- 
Raylcigh limit (Brown & Scriven 1980; TJngar & Brown 1982). The symmetry of the 
change in the cylindrical meniscus caused by varying any of these parameters sets 
the qualitative behaviour for the change of the bifurcation point. When the meniscus 
deflection is reflectively symmetric about the midplane, variation of the new 
parameter couples weakly into the bifurcation behaviour. Parameters that lead to 
antisymmetric meniscus deflections catastrophically change the structure of the 
shape families near the Plateau-Rayleigh limit by rupturing the bifurcation point 
into two separate shape families ; the new limit of stability is marked by a maximum 
drop length where the family of stable shapes turns back to shorter drops and loses 
stability. The value of the maximum drop length is quite sensitive to changcs in the 
parameter. 

The interaction between the cellular flows induced by diffcrential rotation and the 
Plateau-Rayleigh limit is also governed by the symmetry of the meniscus deflection 
caused by the flow field. As shown below, these deflections are generally not 
reflectively symmetric and so rupture the structure of the shape families as described 
above. This result is laid out mathematically in $4 by application of the singular 
perturbation techniques developed by Matkowsky & Reiss (1977) for stutlying 
imperfect bifuractions. 
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H 

FIGURE 1. A differentially rotated cylindrical drop with radius R and height H 

2. Formulation 
We consider a weightless and isothermal drop of a Newtonian liquid held between 

two circular solid surfaces of radius R that  are separated by a distance H ,  as shown 
in figure 1. The drop shape and the flow inside are represented in a stationary 
dimensionless cylindrical coordinate system defined by scaling axial distances with 
Hand radial distances with R. The drop is assumed to have the volume of the cylinder 
that meets the edges of the solid faces where the meniscus pins. This is the appropriate 
contact condition for a melt/solid system in a floating zone without translation and 
for the model experiments of Fowle et al. (1980) so long as the Gibbs criterion (Gibhs 
1906; Lawal & Brown 1982) for the apparent contact angle is met. 

Axisymmetric flows are induced by rotating the lower face a t  speed O and the top 
at  SO, and influence the shape of the meniscus, which is represented by the 
dimensionless radial function f ( z ) .  The local orientation of the meniscus is given by 
the unit normal 

(1) 
er -Af’(z)e, n z  
(1 + A z f ’ ( ~ ) ~ ) ;  

and the tangent vectors 
to - f ( z ) e , ,  t, -f’(z)e,+e,/A, 

where (er, eo, e,) are the unit vectors in the cylindrical coordinate system, and 
A = R/H is the aspect ratio. 

The equations of motion and continuity are put in dimensionless form by scaling 
the radial and angular velocities (u(r ,  z ) ,  v ( r ,  z ) )  with OR, the axial velocity w( r ,  z )  
with OH, and the dynamic contribution to the pressure p ( r ,  z )  with pa,  were p is 
the fluid viscosity. The dimensionless equations are 

f4a) 
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U 
-+ur+w, = 0, (5) r 

where the subscripts on (u,  v, w, p )  denote partial differentiation, i.e. u, E d u / d r .  The 
Reynolds number is defined by Re E RRHp/,u, and p is the density of the liquid. The 
boundary conditions appropriate to  solving (4) and (5) are as follows : a t  the centreline 

(6) u = o ,  v = o ,  - = 0, 
aw ( r = O ,  O d z d  1 )  

dr 

and a t  the surface of the disks (0 d r d 1 )  

u = o ,  w = r ,  w = o ,  x = o ,  (7) 

u=O, u = ~ ,  w = O ,  z = 1 .  (8) 

Equation (6) states the standard symmetry conditions for the centreline and (7 )  and 
(8) specify no slip and no penetration along the solid disks. The condition for no 
normal velocity a t  the meniscus ( r  = f ( z ) ,  0 d z d 1)  is 

u-Af’(z) w = 0, (9) 

and the balances of the tangential components of stress there are 

when the drop is surrounded by a tenuous fluid. I n  these conditions T,,, T,, etc. are 
components of the dimensionless stress tensor T. 

The balance of normal stress a t  the meniscus yields an equation for the interface 
shape : 

where 2% is the mean curvature of the meniscus: 

(12) Cnn:T-P-2% = 0, 

A ” f ( z ) f ” ( ~ )  -1\2f”(~)- 1 
( 1  + A2f’2(z))g 

2 x  = 

The capillary number C = ,uRR/c sets the relative importance of normal viscous 
stresses and surface tension cr in determining the shape of the meniscus, and so is 
the parameter that dictates the strength of the coupling between the flow field and 
the meniscus. The referencc pressure difference 9 between the drop and the 
surrounding gas is scaled with v / R  and is determined so that  any change in the drop 
shape conserves the volume as 

j : f 2 ( z ) d z  = 1 .  (14) 

For molten semiconductors and many other liquids the capillary number is small; 
for example, a value of C = is large for a small-scale floating-zone system 
operating with either silicon or germanium, both of which have extremely high 
surface tensions. The weakness of the coupling between the change in meniscus shape 
causcd by flow suggests a perturbation solution in powers of capillary number. To 



Flow in a differentially rotated drop 273 

do this for the free-boundary problem (4)-(14) we first transform the problem to a 
fixed cylindrical domain by introducing the mapping 

Each variable is expanded in a Taylor series about C = 0 as 

where v = (u, v, w ) ~ .  The selection of the cylindrical meniscus Cf[O] = 1, Y[O] = 1)  as 
the base state leads to a sequence of problems involving standard cylindrical 
coordinates with x = r .  The flow field (v[O], p[O]) is calculated in $3. A t  higher orders, 
the normal-stress condition (12) is distinguished for calculating the correction to the 
meniscus shape caused by lower-order flow fields, and this shape correction then 
enters into the relations that determine the flow. This approach to the free-boundary 
problem is the essence of the technique of domain perturbations (Joseph 1973). 

3. Flow structure at zero capillary number 
The flow problem for the variables ( ~ [ ~ ] , p [ ~ ] )  at  zero capillary number is still 

nonlinear because of the inertial terms in the momentum equations (4). I n  the limit 
of zero Reynolds number these equations describe the simple shear flow 

v(0) = (0, x( 1 + z ( s -  l ) ) ,  O),  

p(0) = 0. 

We expand the field variables (v[O], pro]) in Reynolds number about the flow (17) as 

V[Ol = v(0) + V(l)Re + O(R2),  p[01 = p(0) +p(”R, + O(RE), (18) 
and calculate the correction (v(l), p(’)) to the flow caused by inertia. It is simply shown 
that the equation and boundary conditions governing the angular component of 
velocity are homogeneous, and so u(l) = 0. 

The axial and radial components of velocity are sought in terms of the stream 
function yW(x, z )  defined by 

The axial and radial momentum equations reduce to 

D 4 ~  = - ~ A ( s -  1) x’( 1 + X ( S -  I ) ) ,  (20) 

with 

The boundary conditions on @(l)(x, z )  are derived from (6)-( 11) as 

( 2  = 0 , l ;  0 < x: d 11, 
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2 

= 2.04 x 10-5 
= 3.84 x 10-4  
4 x 10-5 

FIGITRE 2. Streamlines for the inertially driven secondary flows in a drop with aspect ratio A = 1 
and rotation ratios between 0 and - 1 .  



Flow in a dijferentially rotated drop 275 

The solution of (20)-(23) is 

zk zk 
H,(z) = 1 + z ( s  - 1) + (a ,  + azz )  sinh 2- ( 1  + u3z)  cosh 2 A A 

and the eigenvalues {k , }  are the roots of J l ( k p )  = 0. The constants (a l ,  a2 ,  u3) are 
defined in terms of K = k p / A  as 

(sinh K -  sK) (1 - cosh K )  
K2-sinh2 K 

a, = 9 

(26b) 
sK2 sinh K + (cosh K -  1)  [( 1 - s) sinh K -  K ( s  + cosh K ) ]  

K 2  - sinh2 K u2 = 

K(sinh K - s K )  (1-cosh K )  
K2 - sinh2 K 

u 3 - s - l +  (26 c )  

Generally the series (24) converges rapidly owing to the factor of kp5,  and as few as 
ten terms may be needed to resolve $dl) to within 1 yo accuracy. More terms are needed 
near the axial boundaries and for zones with large aspect ratio. 

The correction to the pressure field y(l)(z, z )  is found by integrating the axial and 
radial momentum equations : 

The pattern of the correction to the flow +(l) caused by inertia is shown in figure 2,  
where the rotation ratio s is varied between 0 and - 1 for a drop with unit aspect 
ratio. When the rotation ratio is positive a single toroidal cell exists like the one shown 
in figure 2 (a )  for s = 0. Fluid is thrown radially outward near the lower rotating disk, 
moves along the meniscus, turns inward along the upper stationary surface and flows 
downward near the centreline to complete the cell. The cell weakens as the rotation 
ratio approaches unity, where the fluid moves in rigid-body rotation, as is easily seen 
by examining (24) and (27). In  this limit the pressure field (27) is entirely centripetal. 

When the top surface is counter-rotated (s < 0 )  a plane of zero angular velocity 
exists inside the drop (see (17))  and a new counter-circulating toroidal cell may form. 
As shown in figures 2 (b- f ) ,  this cell grows from the corner where the meniscus meets 
the upper disk, and spreads and intensifies as s approaches - 1 .  For exact counter- 
rotation ( s  = - l ) ,  the flow field is separated precisely into two toroidal cells of the 
same strength and opposing circulation. Only in this limit do the surfaces of zero 
angular and axial velocity coincide. 

When the aspect ratio is either small or large, simpler forms of $(l)(x, z )  exist for 
describing the flow. In drops of small aspect ratio, the radial derivatives dominate 
(20) and (21), and $(l)(x, z )  is well approximated away from the disks as 

p y x ,  2) z - - 1 ) (1 + z(s - 1 )) q x 2 -  1 ) (xz - 2).  (28 ) 

A simple characterization of the cellular flow is given by the streamline that divides 
the counter-circulating cells. From (28) this streamline occurs on the plane 
z* = (1 - s)-l and corresponds preciscly to the plane of zero angular velocity. 

When the streamline approaches to within O(A) of the solid surface a t  z = 1, (28) 
is no longer valid because all derivatives in (21) are of comparable magnitude. The 
turning flows near the disks are clearly seen in the streamlines computed from the 
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s= 0 s=  -4 s=  -1 

A$ = 1.2 x 10-7 

= 9.04 X lo-' 1.16X10-6 G,,,, = 1.30 X 1 0-6 *-= 0 ' L ~  =-3.48 x 10-7 $mi,,=-1.30X 
A * =  1 . 6 ~ 1 0 - 7  AJ, = 2.0 x 10-7 

4-- 

FIGTJRE 3. Streamlines for the inertially driven secondary flows in a drop with A = & and s between 
0 and - 1 .  The radial coordinate has been stretched by the transformation y = Ax. 

series solution (24) that  are shown in figure 3 for A = Q. The flow in this region is 
analysed by writing the full solution (25) near z = 1 as 

H p ( z )  x I+z(s-I)-  e(z - l )kp lA+O(e-kplA) .  (29) 

The radial growth of the second cell is followed by expansion of the exponential term 
about z = 1 as 

(30) 
The disappearance of the second cell is marked by the value of s where the stagnation 
streamline coincides with the boundary at z = 1 .  From (30) this requires that 

Additional expansions about x = 0 and x = 1 show that the upper cell first appears 

A 
A- 2.725' 

a t  the meniscus for 
s =  

and reaches the axis of rotation at 

A 
A - 1.678 ' 

s =  (33) 
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$-= 7.10 x 10-3 

s =  -$ 
$,,,i,, = -3.54 x 1 0 - ~  

5.65 x 10-3 

S=-$ 

$min = -4.43 x 10-4 
$-= 4.32 x 10-3 

s =  -1 
Jl- = -2.30 x 10-3 
$,= 2.30 x 10-3 

FIGURE 4. Streamlines for the inertially driven secondary flows in a drop with A = 5 and s between 
0 and - 1 .  The radial coordinate has been stretched by the transformation y = Ax. The space 
between streamlines is A$ = 1 x in each plot. 

When the aspect ratio is large the axial derivatives dominate (20) and (21), and 
@(l)(z, z )  is approximated in the core of the drop as 

9 (34) 

This form of the stream function is the generalization of the result of Schultz-Grunow 
(1935) for the low-Reynolds-number flow in the core between stationary and rotating 
disks of large radius and is a similarity solution (Karman 1921) for this case. I n  fact, 
the core flows in both geometric extremes of large and small aspect ratio are similarity 
forms where the velocity parallel to  the shortest dimension is independent of the long 
coordinate. 

When two cells form, the axial location of the dividing streamline is a t  
z = (2s+3)/(1 - s ) ,  which exists for rotation ratios in the range 

- (S - 1 )  x2z2(z- 1)' ( Z ( 8 -  I )  + 2s + 3) 
60A 

@.'l)(Z,Z) z 

- l < s <  -%. (35) 
The expression (34) is not valid within O( l /A)  of the meniscus because of the turning 
flow near the meniscus. Joseph (1975) used the form (34) as an outer solution in a 
singular perturbation expansion for determining the flow near the meniscus in terms 
of a series of the complicated Papkovich-Fadle eigenfunctions. Of course, this turning 
flow is readily found from the series of Bessel functions given by (24); representative 
secondary flows are shown in figure 4 for A = 5-0. 
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The dependence of the flow structure on the aspect and rotation ratios is shown 
on figure 5,  which is composed of asymptotic results for large and small aspect ratios 
connected by computations of the stagnation streamline from the series solution (24). 
The cellular flows are classified as either: 

(1) a single toroidal cell ; 
(11) two cells, one not extending to the axis of rotation; 

(111) two cells, both reaching the axis of rotation. 
The entire range of aspect ratio is shown, although the drop becomes unstable a t  

A less than 1/27r, the Plateau-Rayleigh limit. 

4. Meniscus deformations at low capillary numbers 
The deflections of the meniscus from the cylindrical form caused by the inertially 

driven flows described in $ 3  are governed by the linearized form of the normal stress 
balance, 

(36) 

j ; p l ( z ) d z  = 0, 
by the volume constraint, 

(37) 

and by the pinning conditions along the perimeter of the disks 

f"'(1) =f" ' (0)  = 0. (38) 

When the aspect ratio is not near the Plateau-Rayleigh limit of 1/277, the solution 
of (36)-(38) is straightforward and yields 
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0 0.2 0.4 0.6 0.8 1 .o 
Axial coordinate z 

FIGURE 6. Meniscus deflections for drops with aspect ratio A = 5 and rotation 
ratios s of -i, -I and - 1 .  

where 
(8-1) (9A2-4z2)-8z O0 

64A2 p=1 
$@) = 

Z k P  zk +-----”! a2 sinh -+a, cosh y ) } / k : ( l +  k ; ) ,  (40) i - k z (  l + k i  A 

and the constants (a1, a2, a3) are 

, 
-A( i  - cos ( l /A))  ($(0) +$( 1)) +sin ( l /A) Q, 

2A( 1 - cos ( l /A))  -sin (1/A) 
a1 = 

s i n ( l / h )  ($(0)-0)-A(l-cos(l/A)) ($(0)-$(1)) 
013 = 

2 4  1 - cos ( l /A))  - sin (1/A) 

with CD = j : + ( z ) d z .  Representative shape corrections are shown in figurcs 6-8 for 
aspect ratios of 5, 1 and 5. The deflection of the meniscus is reflectively symmetric 
about the midplane of the drop for exact counter-rotation, and bulges outward more 
ncar the faster spinning disk for other values of s. The magnitude of the deflection 
decreases as 0 ( k 2 )  when the aspect ratio of the drop becomes large. 

When the aspect ratio approaches 1/2n the correction to  the meniscus shape (39) 
becomes unbounded unless $(0) = $(1). This condition is only met when the normal 
stress acting on the meniscus is reflectively symmetric, as for s = 1. I n  the case 
of iso-rotation (s = 1 ), the meniscus remains cylindrical. For exact counter-rotation 
(s = - 1) a t  A = 1/2n, the constants (al, a3) are 

a1 = 0, a3 = - + ( O ) + Q , ,  (42) 
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I I I I 
0 0.2 0.4 0.6 0.8 

Axial coordinate z 

FIGURE 7 .  Meniscus deflections for drop with A = 1. 

1 I I I I 

Axial coordinate z 

FIGURE 8. Meniscus deflections for drop with A = t. 
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and a2 is not determined solely from the problem a t  first order in C. The regular 
perturbation (16) in capillary number fails when the rotation ratio s is not 1 .  The 
significance of this behaviour is readily explained by examining the coupling between 
the flow field and the multiple static meniscus shapes that exist near the Plateau- 
Rayleigh limit. 

4.1. C = 0: perfect bifurcation 

The unduloidal shapes that evolve from the cylindrical drop at the Plateau-Rayleigh 
limit are captured by standard perturbation techniques for analysing bifurcations 
Iooss & Joseph 1980). Following the methodology in Brown & Scriven (1980), the 
drop shape, reference pressure and aspect ratio are expanded as a Taylor series in 
an amplitude parameter B that measures the difference between the cylindrical 
menisci and the bifurcating forms : 

The scaling c serves but one purpose ; it  provides a systematic means of determining 
the proper relation between the magnitude of the shapes in the bifurcating family 
and the distance (in aspect ratio) from the point of bifurcation. Once a non-zero term 
of higher order is found in the expansion for aspect ratio this series is inverted to 
yield an explicit relationship between e and A - A,. 

The O ( s )  terms in (43) are governed by the homogeneous versions of (36)-(38), which 
are solved as an eigenvalue problem for a set of eigenvalues A, and eigenfunctions 
( fi, PI) .  These values of A, mark the bifurcation of families of unduloidal shapes from 
the cylinder. The largest one, A, = 1/2n, is the Plateau-Rayleigh limit, and we focus 
only on this bifurcation. To leading order in amplitude the drop shape and reference 
pressure along this new shape family are 

f ( z )  = l+A(A)sin 2nz+O(A2), (44a) 

P = i + $ A ~ + o ( A ~ ) ,  (44b) 

(44c) 

where the amplitude A(A) is defined as 

A(A) = (Qn)? (A- 1/27~)4. 

These unduloidal shapes bifurcate supercritically in terms of A from the cylindrical 
family a t  A = 1/2n and are unstable (Ungar & Brown 1982). Both shape families are 
represented on the bifurcation diagram figure 9, where the amplitude of the difference 
between the unduloidal and cylindrical shape is plotted against the aspect ratio. 

4.2. C + 0: imperfect bifurcation 

For aspect ratios near 1/2n, the Taylor series (16) in capillary number is not unique, 
and the equations for meniscus shapes (36)-(38) are singular, reflecting this 
multiplicity. The unbounded solution (39) for A = A, = 1/2n is symptomatic of a 
singular dependence of the bifurcation on C, and points to  a rescaling of the 
dependence of aspect ratio with C along the solution families. We determine this 
scaling by the singular perturbation technique developed by Matkowsky & Reiss 
(1977). Once more, the variables ( f ( x ) ,  9, A, C) are expanded in a Taylor series in a 
new scaling parameter. The relationship between this parameter, the aspect ratio and 
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Aspect ratio A 

FIGUKE 9. Plot of amplitude ofthe meniscusdeflection versus aspect ratio for static meniscus shapes; 
C = 0. The Plateau-Rayleigh limit is A = A, = 1/2n. Solid lines denote stable shapes and dashed 
lines unstable ones. 

the capillary number is determined so that bounded solutions for the shape and 
pressure are found near A = 1 / 2 m .  The details of this application to the differentially 
rotated captive drop are similar to  the analysis presented in Ungar & Brown (1982) 
and are not repeated here. 

The appropriate scaling between A and C close to the Plateau-Rayleigh liinit is 
given by the innor parameter 

and the corresponding form of the shape correction is 

The amplitude of the correction is defined by the cubic equation 

wit,h 

The amplitude of the inner solution is plotted on figure 10 for selected values of 
W s R,(l -s2). For W =I= 0, the bifurcation is ruptured by the normal stress into two 
distinct curves. Loss of stability of the slightly distorted drops now occurs a t  the limit 
point where two solutions of (47) merge (Matkowsky & Reiss 1977). The value of A 
for this limit point is given by the condition for the vanishing of the discriminant 

(49) 

An analytical expression for the stable drop shape that is uniformly valid in A is found 

of (47): 
A* = $n{l +0.0280&e(~2- l ) # + .  . .}. 
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I I 1 I I 

I I 1 I 
-0.1 0 0.1 

q (A -A,)/Ca 

FIGURE 10. Effect of secondary flows on the Plateau-Rayleigh stability limit is shown as a plot of 
the amplitude of the meniscus deflection as a function of aspect ratio. Curves are for fixed values 
of 8. 

by matching the inner solution (46) with the outer solution given by (39)-(41), as 
outlined in Matkowsky & Reiss (1977). The inner limit of the outer solution is 

sin 2nz. 
dR,(s2- 1) (1  + l6p/n) 

32m3 
f(z) x 1- 

Accordingly, the inner amplitude that matches with (50) in the outer limit is 

A(7)  = #(27r7)4 cos ($9+Qn), (51) 

where 

For exact counter-rotation, 9i? = 0 and the bifurcation is not broken. I n  this case 
the expansion in capillary number is regular and the first-order flow field ( ~ " 1 ,  p"])  
couples into the condition for the solvability of the normal stress balance a t  
second order in C. The shape constant u2 is determined by this condition. The 
bifurcation point will shift to a larger aspect ratio; the calculation of the shifting 
requires the computation of the correction to the flow field caused by the meniscus 
deflection, and is not presented here. 

5. Discussion 
The structure of the cellular motions in cylindrical drops is completely determined 

for low Reynolds numbers by the asymptotic analysis described here. The most 
significant results for the floating-zone method of crystal growth are the forms of the 
velocity field near the disks, either ofwhich may represent the growing crystal. Except 
a t  high aspect ratio, the turning flows near the centre of the crystal and the meniscus 
cover significant portions of the solidification front and lead to appreciable radial 
segregation of solutes in the crystal for any value of the rotation ratio away from 

10 F L M  126 
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unity. The specific form of the radial concentration profile in the crystal depends on 
the value of s and on whether the crystal grows from the upper or lower surface. The 
type I1 flows are of particular interest when the second toroidal cell separates along 
the solidification interface, because the presence of this stagnation curve will lead to 
an annulus of sharp variation of composition within the crystal. The ranges of s and 
A for types I1 flows are given on figure 5. 

Experimental verification of the shapes of the cells predicted here is complicated 
by the much faster azimuthal motion on which these secondary flows are superim- 
posed. Fowle et al. (1980) used particle-tracking methods to detect the point on the 
meniscus where the angular velocity vanished, and tried to infer the structure of thc 
secondary motions solely from this result. For aspect ratios near unity, this 
conclusion is not possible because the plane of vanishing angular velocity predicted 
from (17)  is not the same as the curve of the streamline dividing the two cells. 

The extent of validity of the results given here rigorously is limited to small 
Reynolds number, but can be expanded systematically by considering the next terms 
in the Taylor series (18). Then the first non-zero correction to the azimuthal velocity 
arises a t  O(Rg) and the first corrections to u, w and p occur a t  O(R%). We choose 
not to  calculate these corrections, bu t  instead compare the asymptotic results with 
numerical solutions of the entire equations ; these calculations will be presented 
elsewhere (Harriott & Brown 1982). The comparison for A = 1.0 and s = - 1.0 shows 
the asymptotic solution to  be within 10% of the numerical results for Reynolds 
numbers up to 50. This extended range of validity of a solution developed for low 
Reynolds numbers is similar to results that  have been found for other confined 
rotating flows (Pa0 1970). 

Although the meniscus deflections caused by the flow are small for small capillary 
number (see figure 5), they have a pronounced effect on the structure of the solutions 
near the Plateau-Rayleigh limit A, = 1/27r. The breaking of the shape families that  
exist for zero capillary number is understood in terms of the symmetries of the shapes 
a t  zero capillary number and the symmetries of the deflections caused by the flow. 
The shape families are broken whenever the deflection caused by the flow has any 
component with the same symmetry as the unduloid shapes that bifurcate a t  C = 0. 
This symmetry requirement prescribes the potential interactions between deflections 
of the meniscus shape caused by other either buoyancy-driven or surface-tension- 
driven flows with the Plateau-Rayleigh limit. 

This research was supported by the Materials Processing Program of the U.S. 
National Aeronautic and Space Administration. 
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